SMT (surface mount technology) component placement systems, commonly called pick-and-place machines or P&Ps, are robotic machines which are used to place surface-mount devices (SMDs) onto a printed circuit board (PCB). They are used for high speed, high precision placing of broad range of electronic components, like capacitors, resistors, integrated circuits onto the PCBs which are in turn used in computers, consumer electronics as well as industrial, medical, automotive, military and telecommunications equipment.
The placement equipment is part of a larger overall machine that carries out specific programmed steps to create a PCB Assembly. Several sub-systems work together to pick up and correctly place the components onto the PCB. These systems normally use pneumatic suction cups, attached to a plotter-like device to allow the cup to be accurately manipulated in three dimensions. Additionally, each nozzle can be rotated independently.
Surface mount components are placed along the front (and often back) faces of the machine. Most components are supplied on paper or plastic tape, in tape reels that are loaded onto feeders mounted to the machine. Larger integrated circuits (ICs) are sometimes supplied arranged in trays which are stacked in a compartment. More commonly ICs will be provided in tapes rather than trays or sticks. Improvements in feeder technology mean that tape format is becoming the preferred method of presenting parts on an SMT machine.
Early feeder heads were much bulkier, and as a result it was not designed to be the mobile part of the system. Rather, the PCB itself was mounted on a moving platform that aligned the areas of the board to be populated with the feeder head above.